ELLIPTIC CURVES

By Jessica and Sushi

WHAT ARE ELLIPTIC CURVES?!

$$
y^{2}=a x^{3}+b x+c
$$

Plot $[\{-(x \wedge 3-2 x+1) \wedge .5,(x \wedge 3-2 x+1) \wedge .5\},\{x, 2,-2\}]$

Plot $[\{-(x \wedge 3+x+1) \wedge .5,(x \wedge 3+x+1) \wedge .5\},\{x,-1,1\}]$

Plot $[\{-(x \wedge 3-x+1) \wedge .5,(x \wedge 3-x+1) \wedge .5\},\{x,-2,2\}]$

Plot $\left[\left\{-\left(100 x^{\wedge} 3+x\right) \wedge .5,\left(100 x^{\wedge} 3+x\right) \wedge .5\right\},\{x,-2,2\}\right]$

Plot $[\{-(x \wedge 3-3 x+2) \wedge \cdot 5,(x \wedge 3-3 x+2) \wedge .5\}, \quad\{x,-2,2\}]$

ADDING POINTS!

- Adding points is not the same addition as $1+1=2$.
- The addition of points is the production of a third point using two already known points
- Properties of addition
- Closure
- Associativity
- Existence of inverse
- Existence of identity
- Commutativity


```
Plot[{-(x^3 - 3 x + 2)^. 5, (x^3 - 3x+2)^.5}, {x, -2, 2}]
```


Angle bisector method -

- Reflect one of the points across the x axis
-Connect the 3 points together
- Draw and extend the line that bisects the angle formed by the 3 points

This method did not work because it was not commutative or associative. Which of the 2 points

Rotation method -

- Rotate the point through an arbitrary angle.

Rotation and flip across the y-axis violated closure, since the point no longer lies on the curve.

Special Case:
Flipping

CORRECT SOLUTION!

- Given two points, connect them and extend the line. The solution point is the third point the line intersects on the elliptic curve reflected across the x-axis.
- Special Cases:
- For lines that are tangent to the curve, the points where the lines are tangent to the curve count as two points.
- If the 2 points have the same \times values, then a vertical line is formed. Because the 2 points are inverses, the solution is the identity.

Plot $[\{-(x \wedge 3-x+1) \wedge .5,(x \wedge 3-x+1) \wedge .5\},\{x,-2,2\}]$

Plot $[\{-(x \wedge 3-2 x+1) \wedge .5,(x \wedge 3-2 x+1) \wedge .5\},\{x, 2,-2\}]$

ALGEBRAIC FORM OF ADDITION

$$
\begin{aligned}
& y^{2}=a x^{3}+b x+c \\
& \left(x_{1}, y_{1}\right) \star\left(x_{2}, y_{2}\right)=\left(x_{3}, y_{3}\right) \\
& y-y_{1}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\left(x-x_{1}\right)=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} x+\frac{y_{2}-y_{1}}{x_{2}-x_{1}} x_{1}+y_{1} \\
& \alpha=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
& \beta=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} x_{1}+y_{1} \\
& y=(\alpha x+\beta) \\
& (\alpha x+\beta)^{2}=a x^{3}+b x+c \\
& \alpha^{2} x^{2}+2 \alpha \beta x+\beta^{2}=a x^{3}+b x+c \\
& 0=a x^{3}-\alpha^{2} x^{2}+(b-2 \alpha \beta) x+c-\beta^{2}
\end{aligned}
$$

Using Vieta's Formula:

$$
\begin{aligned}
& x_{1}+x_{2}+x_{3}=-\frac{-\alpha^{2}}{a}=\frac{\alpha^{2}}{a} \\
& x_{3}=\frac{\alpha^{2}}{a}-\left(x_{1}+x_{2}\right) \\
& y_{3}=\alpha\left(\left(x_{1}+x_{2}\right)-\frac{\alpha^{2}}{a}\right)-\beta
\end{aligned}
$$

ASSOCIATIVITY

Plot $[\{-(x \wedge 3-3 x+2) \wedge .5,(x \wedge 3-3 x+2) \wedge .5\},\{x,-2,2\}]$

CLOSURE

Closure:
Given 2 points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ on an elliptic curve, the line connecting them intersects the curve at a third point $\left(x_{3}, y_{3}\right)$. This is because $y \rightarrow \infty$ as $x \rightarrow \infty$ and the graph has a curvature, so the straight line can't be parallel to it, so it must intersect.

Reflect $\left(x_{3}, y_{3}\right)$ over x-axis to obtain final point. Because on the elliptic curve, there is x-axis symmetry, so there is closure (2 points map to 3rd point)

EXISTENCE OF IDENTITY

Given $\left(x_{1}, y_{2}\right)$ and $\left(x_{1}, y_{2}\right)=\left(x_{1}, \infty\right)$
Line: $x-x_{1}=\frac{x_{2}-x_{1}}{y_{2}-y_{1}}\left(y-y_{1}\right)$
$x=\frac{x_{2}-x_{1}}{y_{2}-y_{1}} y+x_{1}$
$x=\frac{0}{\infty-y_{1}} y+\frac{0}{\infty-y_{1}} y_{1}+x_{1}$
Note: $\frac{0}{\infty-y_{1}}=0$
$x=x_{1}$ and $y=-y_{1}$
Thus, since the third point of intersection is $\left(x,-y_{1}\right)$, the solution is $\left(x, y_{1}\right)$, which is what we started with. Therefore ∞ is the identity.
The reason we must reflect the point by the x -axis is so we have an identity.

EXISTENCE OF INVERSE

Given two points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ so that $x_{1}=x_{2}$ and $y_{2}=-y_{1}$
Then, $y_{3}=\alpha\left(x_{1}+x_{2}-\frac{\alpha^{2}}{a}\right)-\beta$
$\alpha=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-2 y_{2}}{0} \rightarrow \infty$
Since ∞ is the identity, $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ are inverses.

COMMUTATIVITY

$x_{3}=\frac{\alpha^{2}}{a}-\left(x_{1}+x_{2}\right)$
$\alpha=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$ is the same no matter which order the 2 points are imputed, since it's the same line.

The order of $\left(x_{1}+x_{2}\right)$ does not matter since adding is commutative.
Thus, x_{3} is the same even if x_{1} and x_{2} are flipped.
$y_{3}=\alpha\left(\left(x_{1}+x_{2}\right)-\frac{\alpha^{2}}{a}\right)-\beta$
As above, α and $x_{1}+x_{2}$ are commutative. β is also commutative b / c the line remains the same regardless of the order of the 2 points.
Thus, y_{3} is the same if $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ are switched.
Therefore, \star is commutative.

A Brief Review of Groups

- Groups: sets with the following properties
- Closure
- Associative
- Identity
- Inverse
- Abelian Group: a group that is commutative

A Brief Introduction to Rings and Fields

- Rings: sets with the following properties
- Abelian under "addition"
- Not groups under "multiplication": have all properties except inverse
- Distributive property
- Ex: Z =\{...-4,-3,-2,-1,0,1,2,3,4,..\}
- Fields: sets with the following properties
- Group under addition
- Isn't group under multiplication but would be if 0 were removed (because 0 has no inverse)
- Distributive
- Ex: Q, Fp

Cryptography

Group of points $\mathrm{E}\left(\mathbf{F}_{p}\right)$ over finite field Fp on elliptic curve

$$
\mathrm{Q}=\underbrace{\mathrm{P}+\mathrm{P}+\mathrm{P}+\mathrm{P}+\mathrm{P}+\ldots . .+\mathrm{P}=\mathrm{nP},}
$$

adding same point P to itself " n " times

Cryptography

- Public key: can be seen by everyone
- large prime p (for Fp)
- equation for elliptic curve E over $\mathbf{F p}_{p}$
- coordinates of point P in $E\left(F_{p}\right)$
- Private key: can only been seen the senders of the message (Alice and Bob)

Private Key

Alice	Bob
Picks a secret integer n_{a}	Picks a secret integer n_{b}
Calculates $n_{a} P=Q_{a}$	Calculates $n_{b} P=Q_{b}$

Alice sends Qa to Bob.
Bob sends Q_{b} to Alice.

Private Key

Alice	Bob
Calculates $\mathrm{n}_{\mathrm{a}} \mathrm{Q}_{\mathrm{b}}$	Calculates $\mathrm{n}_{\mathrm{b}} \mathrm{Q}_{\mathrm{a}}$

SHARED SECRET KEY

$$
n_{a} Q_{b}=n_{a}\left(n_{b} P\right)=\left(n_{a} P\right) n_{b}=Q_{a} n_{b}
$$

THE END

